Поговорим о свойствах, или законах умножения.

Переместительный (коммуникативный) закон умножения:
а · b = b · а.

От перемены мест множителей произведение не меняется.

Пример:

569 · 17 = 17 · 569

Сочетательный (ассоциативный) закон умножения:
а · b · c = а · (b · c).

Произведение не изменится, если какую-нибудь группу рядом стоящих множителей заменить их произведением.

Пример:

39 · 25 · 4 = 39 · (25 · 4) = 39 · 100 = 3900

Распределительный (дистрибутивный) закон умножения относительно сложения:
(а + b + c) · d = аd + bd + cd.

Произведение суммы нескольких чисел на какое-нибудь число равно сумме произведений каждого слагаемого на это число.

Пример:

(150 + 75 + 12) · 4 = 150 · 4 + 75 · 4 + 12 · 4 = 600 + 300 + 48 = 948

Как на практике применяется это свойство умножения? К примеру, у нас есть прямоугольник , разбитый на 2 других прямоугольника. Требуется найти его площадь.

Можно сначала найти длину его стороны, а затем перемножить длину и ширину, получится 
S = (a + b) * c
А можно найти площади маленьких прямоугольников и сложить их
S = (a * c) + (b * c)
А поскольку мы искали площадь одного и того же прямоугольника, то 
(a + b) * c = (a * c) + (b * c)

Распределительный (дистрибутивный) закон умножения относительно вычитания:
(а - b) · c = аc - bc.

Чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе.

Пример:

(125 – 42) · 8 = 125 · 8 - 42 · 8 = 1000 – 336 = 664

Умножение числа на единицу:
а · 1 = 1 · а = а

При умножении числа на единицу получаем само число.

Пример:

45 · 1 = 1 · 45 = 45

Умножение числа на ноль:
а · 0 = 0 · а = 0.

При умножении числа на нуль получаем нуль.

Пример:

6999 · 0 = 0 · 6999 = 0.

Примечание. Если в произведении нескольких множителей хотя бы один из множителей равен нулю, то произведение равно нулю.