Задание 751

Вычислите площадь закрашенной фигуры (рис. 46), если длина стороны клетки равна 1 см.

Решение

а) $S_{квадрата}=a^2=8^2=8\ast8=64(см^2)$
$S_{круга}={\operatorname\pi}r^2=3,14\ast1^2=3,14(см^2)$
На рисунке 4 одинаковых круга, поэтому их суммарная площадь:
$S_{\operatorname к\operatorname р\operatorname у\operatorname г\operatorname а}\ast4=3,14\ast4=12,56{\operatorname с}{\operatorname м}^2$
$S_{\operatorname ф\operatorname и\operatorname г\operatorname у\operatorname р\operatorname ы}=S_{\operatorname к\operatorname в\operatorname а\operatorname д\operatorname р\operatorname а\operatorname т\operatorname а}-4\ast S_{\operatorname к\operatorname р\operatorname у\operatorname г\operatorname а}=64-12,56=51,44{\operatorname с}{\operatorname м}^2$

б)$S_{\operatorname к\operatorname в\operatorname а\operatorname д\operatorname р\operatorname а\operatorname т\operatorname а}=a^2=1^2=1{\operatorname с}{\operatorname м}^2$
Треугольник на фигуре можно разделить пополам и сложить из этих половинок квадрат со стороной 1 см;
Прямоугольник состоит из 2 квадратов со стороной 1 см;
$S_{\operatorname к\operatorname р\operatorname у\operatorname г\operatorname а}={\operatorname\pi}r^2=3,14\ast3^2=3,14\ast9=28,26{\operatorname с}{\operatorname м}^2$
$S_{\operatorname ф\operatorname и\operatorname г\operatorname у\operatorname р\operatorname ы}=S_{\operatorname к\operatorname р\operatorname у\operatorname г\operatorname а}-5\ast S_{\operatorname к\operatorname в\operatorname а\operatorname д\operatorname р\operatorname а\operatorname т\operatorname а}=28,26-5=23,26{\operatorname с}{\operatorname м}^2$

Задание 752

Пицца, диаметр которой равен 30 см, стоит столько же, сколько две пиццы диаметром 20 см. В каком случае Дима съест больше пиццы: если купит одну большую или две маленькие, если все пиццы имеют одинаковую толщину?

Решение

r1 = 30 : 2 = 15 (см) диаметр большой пиццы;
r2 = 20 : 2 = 10 (см) диаметр маленькой пиццы;
$S_1={\operatorname\pi}r_1^2=3,14\ast15^2=3,14\ast225=706,5{\operatorname с}{\operatorname м}^2$ − площадь большой пиццы;
$S_2={\operatorname\pi}r_2^2=3,14\ast10^2=3,14\ast100=314{\operatorname с}{\operatorname м}^2$ − площадь маленькой пиццы, следовательно: 314 * 2 = 628 $см^2$ − суммарная площадь двух маленьких пицц.
706,5 − 628 = 78,5 ($см^2$)
Ответ: Дима съест на 78,5 $см^2$ больше, если купит одну большую пиццу.

Задание 753

Диаметр колеса автомобиля равен 65 см. Автомобиль движется с такой скоростью, что колеса делают шесть оборотов в секунду. Найдите скорость автомобиля в километрах в час. Ответ округлите до десятых.

Решение

l = 2πr = πd = 3,14 * 65 = 204,1 см длина окружности колеса;
204,1 * 6 = 1224,6 см/сек скорость автомобиля в сантиметрах в секунду.
1 ч = 60 мин * 60 с = 3600 секунд;
1 км = 1000 м * 100 см = 100000 см, тогда:
$\frac{1224,6\ast3600}{100000}$ = 44,0856 ≈ 44,1 км/ч.

Задание 754

Диаметр колеса вагона равен 78 см. За 2,5 мин колесо делает 1000 оборотов. Найдите скорость поезда метро в километрах в час. Ответ округлите до десятых.

Решение

l = 2πr = πd = 3,14 * 78 = 244,92 см длина окружности колеса;
244,92 * 1000 : 2,5 = 97968 см/мин скорость поезда метро в сантиметрах в минуту.
1 ч = 60 мин;
1 км = 1000 м * 100 см = 100000 см, тогда:
$\frac{97968\ast60}{100000}$ = 58,7808 ≈ 58,8 км/ч.

Задание 755

Найдите длину дуги, которую описывает часовая стрелка длиной 6 см за 1 ч.

Решение

r = длина часовой стрелки = 6 см;
l = 2πr = 2 * 3,14 * 6 = 37,68 см длина окружности циферблата;
На циферблате 12 дуг по 1 часу, тогда:
37,68 : 12 = 3,14 см длина дуги, которую описывает часовая стрелка длиной 6 см за 1 ч.

Задание 756

Найдите длину дуги, которую описывает минутная стрелка длиной 24 см за 40 мин.

Решение

r = длина часовой стрелки = 24 см;
l = 2πr = 2 * 3,14 * 24 = 150,72 (см) - длина окружности циферблата;
На циферблате 60 дуг по 1 минуте, тогда:
$\frac{40}{60}=\frac23$ - часть циферблата занимает искомая дуга, следовательно:
$150,72\ast\frac23=50,24\ast2=100,48$ (см) - длина дуги, которую описывает минутная стрелка длиной 24 см за 40 мин.

Задание 757

Вычислите площадь закрашенной фигуры, изображенной на рисунке 47.

Решение

Найдем площадь не закрашенного участка отмеченного цифрой 1. Данная площадь равна площадь квадрата со стороной 5 см вычесть 1/4 площади окружности со радиусом 5 см, тогда:
$S_1=S_{\operatorname к\operatorname в\operatorname а\operatorname д\operatorname р\operatorname а\operatorname т\operatorname а}-\frac14S_{\operatorname о\operatorname к\operatorname р\operatorname у\operatorname ж\operatorname н\operatorname о\operatorname с\operatorname т\operatorname и}=5^2-\frac14\ast3,14\ast5^2=25-\frac{78,5}4=25-19,625=5,375$

Так как, таких не закрашенных участков 8, то 8 * 5,375 = 43 $см^2$ - площадь не закрашенной области на рисунке 47.
Площадь закрашенной фигуры = площадь квадрата со стороной 10 см − площадь не закрашенной области = $10^2-43=100-43=57(см^2)$

Задание 758

Все вершины квадрата (рис. 48), диагональ которого равна 6 см, лежат на окружности. Вычислите площадь квадрата, не измеряя его стороны. На сколько площадь квадрата меньше площади круга, ограниченного данной окружностью?

Решение

Диагональ = диаметр окружности, тогда:
r = 6 : 2 = 3 см;
$S_{круга}=\operatorname\pi r^2=3,14\ast3^2=3,14\ast9=28,26(см^2)$;
Квадрат состоит из двух треугольников, площадь каждого из которого равна
$\frac12ah$, где a − основание треугольника, а h − высота треугольника, тогда:
$S_{треугольника}=\frac12\ast6\ast3=3\ast3=9(см^2)$;
$S_{квадрата}=9\ast2=18(см^2)$;
$S_{круга}-S_{квадрата}=28,26-18=10,26(см^2)$
Ответ: на 10,26 $см^2$ площадь квадрата меньше площади круга, ограниченного данной окружностью.