Задание 993
Многогранник разрезали на две пирамиды (рис.10.49). Назовите основание и вершину каждой из получившихся пирамид.
Решение
1) A − вершина, KCBE − основание;
2) A − вершина, DKE − основание.
Задание 994
1) Скопируйте рисунок 10.50 в тетрадь и дорисуйте его до:
а) треугольной пирамиды;
б) четырехугольной пирамиды.
2) Представьте, что у многогранника, изображенного на рисунке 10.50, пять вершин, но одна вершина не нарисована. Как вы думаете, сколько можно придумать многогранников с пятью вершинами, чтобы у них было разное число ребер?
Решение
1.
а) б)
2. У любого многогранника с 5 вершинами 8 ребер. Поэтому нельзя придумать многогранники с пятью вершинами, чтобы у них было разное число ребер.
Задание 995
1) У пирамиды 1883 вершины. Сколько вершин в основании этой пирамиды?
2) У пирамиды 1800 ребер. Какая это пирамида?
3) У пирамиды 28 граней. Сколько у нее вершин?
4) Существует ли пирамида, у которой 1999 ребер?
5) Сумма числа ребер и числа вершин пирамиды равна 25. Какая это пирамида?
6) Сумма числа вершин, ребер и граней пирамиды равна 26. Какая это пирамида?
Решение
1) 1882 вершины в основании.
2) Девятьсотугольная пирамида.
3) 28 вершин.
4) Нет, количество ребер − четное число.
5) Восьмиугольная пирамида, в которой 9 вершин и 16 ребер.
6) 7 вершин, 7 граней, 12 ребер. Это шестиугольная пирамида.
Задание 996
Найдите значение выражения
$4-(\frac{41}{84}-\frac5{21})+7\frac{11}{30}=4-(\frac{41}{84}-\frac{20}{84})+7\frac{11}{30}=4-\frac{21}{84}+7\frac{11}{30}=4-\frac14+7\frac{11}{30}=3\frac34+7\frac{11}{30}=3\frac{45}{60}+7\frac{22}{60}=10\frac{67}{60}=11\frac7{60}$
Задание 997
Занятия в школе длятся 6 2/3 ч, причем 1/8 этого времени отводится на перемены. Сколько времени отводится на перемены? Выразите ответ в часах, а затем в минутах.
Решение
$6\frac23\ast\frac18=\frac56({\operatorname ч})=\frac{5\ast60}6({\operatorname м}{\operatorname и}{\operatorname н})=(5\ast10)({\operatorname м}{\operatorname и}{\operatorname н})=50({\operatorname м}{\operatorname и}{\operatorname н})$ − отводится на перемены.
Ответ: $\frac56$ часа или 50 минут.
Задание 998
Из городов A и B одновременно навстречу дуг другу вышли скорый и пассажирский поезда. Через 2 ч поезда встретились, а еще через 3 ч пассажирский поезд прибыл в город B. Определите скорость скорого поезда, если скорость пассажирского равна 60 км/ч.
Решение
1) 3 * 60 = 180 (км) − проехал до встречи скорый поезд;
2) 180 : 2 = 90 (км/ч) − скорость скорого поезда.
Ответ: 90 км/ч.
Задание 999
В 9 одинаковых коробок разложили 108 фломастеров. Сколько потребуется фломастеров, чтобы разложить их в 27 таких же коробок?
Решение
1) 108 : 9 = 12 (ф.) − в одной коробке;
2) 12 * 27 = 10 * 27 + 2 * 27 = 270 + 54 = 324 (ф.) − потребуется.
Ответ: 324 фломастера.